Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117.005
Filtrar
1.
Front Immunol ; 15: 1394925, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690282

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.


Asunto(s)
Metabolismo Energético , Estrés Oxidativo , Sepsis , Sirtuinas , Humanos , Sepsis/tratamiento farmacológico , Sepsis/inmunología , Sepsis/metabolismo , Animales , Sirtuinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inmunología
2.
Nihon Yakurigaku Zasshi ; 159(3): 165-168, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38692881

RESUMEN

Molecular oxygen suffices the ATP production required for the survival of us aerobic organisms. But it is also true that oxygen acts as a source of reactive oxygen species that elicit a spectrum of damages in living organisms. To cope with such intrinsic ambiguity of biological activity oxygen exerts, aerobic mechanisms are equipped with an exquisite adaptive system, which sensitively detects partial pressure of oxygen within the body and controls appropriate oxygen supply to the tissues. Physiological responses to hypoxia are comprised of the acute and chronic phases, in the former of which the oxygen-sensing remains controversial particularly from mechanistic points of view. Recently, we have revealed that the prominently redox-sensitive cation channel TRPA1 plays key roles in oxygen-sensing mechanisms identified in the peripheral tissues and the central nervous system. In this review, we summarize recent development of researches on oxygen-sensing mechanisms including that in the carotid body, which has been recognized as the oxygen receptor organ central to acute oxygen-sensing. We also discuss how ubiquitously the TRPA1 contributes to the mechanisms underlying the acute phase of adaptation to hypoxia.


Asunto(s)
Oxígeno , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio , Canal Catiónico TRPA1/metabolismo , Humanos , Oxígeno/metabolismo , Animales , Canales de Potencial de Receptor Transitorio/metabolismo , Hipoxia/metabolismo , Canales de Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cuerpo Carotídeo/metabolismo
3.
Arq Bras Cardiol ; 121(4): e20230236, 2024 Apr.
Artículo en Portugués, Inglés | MEDLINE | ID: mdl-38695407

RESUMEN

BACKGROUND: Vascular dysfunction constitutes the etiology of many diseases, such as myocardial infarction and hypertension, with the disruption of redox homeostasis playing a role in the imbalance of the vasomotor control mechanism. Our group previously has shown that thyroid hormones exert protective effects on the aortic tissue of infarcted rats by improving angiogenesis signaling. OBJECTIVE: Investigate the role of triiodothyronine (T3) on vascular response, exploring its effects on isolated aortas and whether there is an involvement of vascular redox mechanisms. METHODS: Isolated aortic rings (intact- and denuded-endothelium) precontracted with phenylephrine were incubated with T3 (10-8, 10-7, 10-6, 10-5, and 10-4 M), and tension was recorded using a force-displacement transducer coupled with an acquisition system. To assess the involvement of oxidative stress, aortic rings were preincubated with T3 and subsequently submitted to an in vitro reactive oxygen species (ROS) generation system. The level of significance adopted in the statistical analysis was 5%. RESULTS: T3 (10-4 M) promoted vasorelaxation of phenylephrine precontracted aortic rings in both intact- and denuded-endothelium conditions. Aortic rings preincubated in the presence of T3 (10-4 M) also showed decreased vasoconstriction elicited by phenylephrine (1 µM) in intact-endothelium preparations. Moreover, T3 (10-4 M) vasorelaxation effect persisted in aortic rings preincubated with NG-nitro-L-arginine methylester (L-NAME, 10 µM), a nonspecific NO synthase (NOS) inhibitor. Finally, T3 (10-4 M) exhibited, in vitro, an antioxidant role by reducing NADPH oxidase activity and increasing SOD activity in the aorta's homogenates. CONCLUSION: T3 exerts dependent- and independent-endothelium vasodilation effects, which may be related to its role in maintaining redox homeostasis.


FUNDAMENTO: A disfunção vascular constitui a etiologia de diversas doenças, incluindo infarto do miocárdio e hipertensão, diante da ruptura da homeostase oxi-redutiva ("redox"), desempenhando um papel no desequilíbrio do mecanismo de controle vasomotor. Nosso grupo demonstrou anteriormente que os hormônios tireoidianos melhoram a sinalização da angiogênese, exercendo efeitos protetores sobre o tecido aórtico de ratos infartados. OBJETIVOS: Investigar o papel da triiodotironina (T3) na resposta vascular, explorando seus efeitos em aortas isoladas e a presença de mecanismos redox vasculares. MÉTODOS: Anéis aórticos isolados (endotélio intacto e desnudado) pré-contraídos com fenilefrina foram incubados com T3 (10-8, 10-7, 10-6, 10-5 e 10-4 M) e a tensão foi registrada usando um transdutor de deslocamento de força acoplado a um sistema de coleta. Para avaliar o envolvimento do estresse oxidativo, os anéis aórticos foram pré-incubados com T3 e posteriormente submetidos a um sistema de geração de espécies reativas de oxigênio (ROS) in vitro. O nível de significância adotado na análise estatística foi de 5%. RESULTADOS: A T3 (10-4 M) promoveu o vasorrelaxamento dos anéis aórticos pré-contraídos com fenilefrina em endotélio intacto e desnudado. Os anéis aórticos pré-incubados na presença de T3 (10-4 M) também mostraram diminuição da vasoconstrição provocada pela fenilefrina (1 µM) em preparações de endotélio intacto. Além disso, o efeito vasorrelaxante da T3 (10-4 M) persistiu em anéis aórticos pré-incubados com éster metílico de NG-nitro-L-arginina (L-NAME, 10 µM), um inibidor inespecífico da NO sintase (NOS). Por fim, a T3 (10-4 M) exibiu, in vitro, um papel antioxidante ao reduzir a atividade da NADPH oxidase e aumentar a atividade da SOD nos homogenatos aórticos. CONCLUSÃO: A T3 exerce efeitos dependentes e independentes de endotélio, o que pode estar relacionado ao seu papel na manutenção da homeostase redox.


Asunto(s)
Oxidación-Reducción , Estrés Oxidativo , Ratas Wistar , Especies Reactivas de Oxígeno , Triyodotironina , Vasodilatación , Animales , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Masculino , Triyodotironina/farmacología , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenilefrina/farmacología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Ratas , Reproducibilidad de los Resultados , Vasoconstrictores/farmacología , Aorta Torácica/efectos de los fármacos , Aorta Torácica/fisiología , Técnicas In Vitro , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología
4.
Environ Geochem Health ; 46(6): 193, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696028

RESUMEN

Microplastics (MPs) and copper (Cu) pollution coexist widely in cultivation environment. In this paper, polyvinyl chloride (PVC) were used to simulate the MPs exposure environment, and the combined effects of MPs + Cu on the germination of perilla seeds were analyzed. The results showed that low concentrations of Cu promoted seed germination, while medium to high concentrations exhibited inhibition and deteriorated the morphology of germinated seeds. The germination potential, germination index and vitality index of 8 mg • L-1 Cu treatment group with were 23.08%, 76.32% and 65.65%, respectively, of the control group. The addition of low concentration PVC increased the above indicators by 1.27, 1.15, and 1.35 times, respectively, while high concentration addition led to a decrease of 65.38%, 82.5%, and 66.44%, respectively. The addition of low concentration PVC reduced the amount of PVC attached to radicle. There was no significant change in germination rate. PVC treatment alone had no significant effect on germination. MPs + Cu inhibited seed germination, which was mainly reflected in the deterioration of seed morphology. Cu significantly enhanced antioxidant enzyme activity, increased reactive oxygen species (ROS) and MDA content. The addition of low concentration PVC enhanced SOD activity, reduced MDA and H2O2 content. The SOD activity of the Cu2+8 + PVC10 group was 4.05 and 1.35 times higher than that of the control group and Cu treatment group at their peak, respectively. At this time, the CAT activity of the Cu2+8 + PVC5000 group increased by 2.66 and 1.42 times, and the H2O2 content was 2.02 times higher than the control. Most of the above indicators reached their peak at 24 h. The activity of α-amylase was inhibited by different treatments, but ß-amylase activity, starch and soluble sugar content did not change regularly. The research results can provide new ideas for evaluating the impact of MPs + Cu combined pollution on perilla and its potential ecological risk.


Asunto(s)
Cobre , Germinación , Perilla , Cloruro de Polivinilo , Semillas , Germinación/efectos de los fármacos , Cobre/toxicidad , Semillas/efectos de los fármacos , Perilla/efectos de los fármacos , Microplásticos/toxicidad , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Malondialdehído/metabolismo , Contaminantes del Suelo/toxicidad
5.
Environ Geochem Health ; 46(6): 197, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696118

RESUMEN

Micro/nanoplastics (MNPs) are emerging as environmental pollutants with potential threats to human health. The accumulation of MNPs in the body can cause oxidative stress and increase the risk of cardiovascular disease (CVD). With the aim to systematically evaluate the extent of MNPs-induced oxidative damage and serum biochemical parameters in rats and mice, a total of 36 eligible articles were included in this meta-analysis study. The results reported that MNPs can significantly increase the levels of oxidants such as reactive oxygen species (ROS) and malondialdehyde (MDA) (P < 0.05), and resulted in notable increase in serum biochemical parameters including aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (P < 0.05). Conversely, MNPs significantly reduced levels of antioxidants such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT) (P < 0.05). Subgroup analysis revealed that smaller MNPs with oral administration and prolonged treatment, were associated with more pronounced oxidative stress and enhanced serum biochemical parameters alteration. In addition, after affected by MNPs, the levels of ALT and AST in liver group (SMD = 2.26, 95% CI = [1.59, 2.94] and SMD = 3.10, 95% CI = [1.25, 4.94]) were higher than those in other organs. These comprehensive results provide a scientific foundation for devising strategies to prevent MNPs-induced damage, contributing to solution of this environmental and health challenge.


Asunto(s)
Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratones , Aspartato Aminotransferasas/sangre , Microplásticos/toxicidad , Alanina Transaminasa/sangre , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Contaminantes Ambientales/toxicidad , Nanopartículas , Malondialdehído/sangre , Superóxido Dismutasa/metabolismo
6.
Sci Rep ; 14(1): 10509, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714697

RESUMEN

Chronic non-communicable diseases (CNCDs) pose a significant public health challenge. Addressing this issue, there has been a notable breakthrough in the prevention and mitigation of NCDs through the use of antioxidants and anti-inflammatory agents. In this study, we aim to explore the effectiveness of Eupatorium adenophora Spreng leaves (EASL) as an antioxidant and anti-inflammatory agent, and its potential applications. To construct a cellular model of oxidative damage and inflammation, Caco-2 cells were treated with tert-butyl hydroperoxide (t-BHP). The biocompatibility of EASL-AE with Caco-2 cells was assessed using the MTT assay, while compatibility was further verified by measuring LDH release and the protective effect against oxidative damage was also assessed using the MTT assay. Additionally, we measured intracellular oxidative stress indicators such as ROS and 8-OHdG, as well as inflammatory pathway signalling protein NFκB and inflammatory factors TNF-α and IL-1ß using ELISA, to evaluate the antioxidant and anti-inflammatory capacity of EASL-AE. The scavenging capacity of EASL-AE against free radicals was determined through the DPPH Assay and ABTS Assay. Furthermore, we measured the total phenolic, total flavonoid, and total polysaccharide contents using common chemical methods. The chemical composition of EASL-AE was analyzed using the LC-MS/MS technique. Our findings demonstrate that EASL-AE is biocompatible with Caco-2 cells and non-toxic at experimental levels. Moreover, EASL-AE exhibits a significant protective effect on Caco-2 cells subjected to oxidative damage. The antioxidant effect of EASL-AE involves the scavenging of intracellular ROS, while its anti-inflammatory effect is achieved by down-regulation of the NFκB pathway. Which in turn reduces the release of inflammatory factors TNF-α and IL-1ß. Through LC-MS/MS analysis, we identified 222 compounds in EASL-AE, among which gentianic acid, procaine and L-tyrosine were the compounds with high antioxidant capacity and may be the effective constituent for EASL-AE with antioxidant activity. These results suggest that EASL-AE is a natural and high-quality antioxidant and anti-inflammatory biomaterial that warrants further investigation. It holds great potential for applications in healthcare and other related fields.


Asunto(s)
Antiinflamatorios , Antioxidantes , Estrés Oxidativo , Extractos Vegetales , Hojas de la Planta , terc-Butilhidroperóxido , Humanos , Células CACO-2 , terc-Butilhidroperóxido/farmacología , Hojas de la Planta/química , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Estrés Oxidativo/efectos de los fármacos , Eupatorium/química , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo
7.
Nat Commun ; 15(1): 3793, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714822

RESUMEN

Across the cell cycle, mitochondrial dynamics are regulated by a cycling wave of actin polymerization/depolymerization. In metaphase, this wave induces actin comet tails on mitochondria that propel these organelles to drive spatial mixing, resulting in their equitable inheritance by daughter cells. In contrast, during interphase the cycling actin wave promotes localized mitochondrial fission. Here, we identify the F-actin nucleator/elongator FMNL1 as a positive regulator of the wave. FMNL1-depleted cells exhibit decreased mitochondrial polarization, decreased mitochondrial oxygen consumption, and increased production of reactive oxygen species. Accompanying these changes is a loss of hetero-fusion of wave-fragmented mitochondria. Thus, we propose that the interphase actin wave maintains mitochondrial homeostasis by promoting mitochondrial content mixing. Finally, we investigate the mechanistic basis for the observation that the wave drives mitochondrial motility in metaphase but mitochondrial fission in interphase. Our data indicate that when the force of actin polymerization is resisted by mitochondrial tethering to microtubules, as in interphase, fission results.


Asunto(s)
Actinas , Homeostasis , Interfase , Mitocondrias , Dinámicas Mitocondriales , Actinas/metabolismo , Mitocondrias/metabolismo , Humanos , Forminas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células HeLa , Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Animales
8.
Sci Rep ; 14(1): 10503, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714844

RESUMEN

Diesel exhaust particles (DEPs) are very small (typically < 0.2 µm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs. Inhaled DEPs reach the deepest sites in the respiratory system where they could induce respiratory/cardiovascular dysfunction. Additionally, a previous study has revealed that a portion of inhaled DEPs often activate immune cells and subsequently induce somatic inflammation. Moreover, DEPs are known to localize in lymph nodes. Therefore, in this study we explored the effect of DEPs on the lymphatic endothelial cells (LECs) that are a constituent of the walls of lymph nodes. DEP exposure induced cell death in a reactive oxygen species (ROS)-dependent manner. Following exposure to DEPs, next-generation sequence (NGS) analysis identified an upregulation of the integrated stress response (ISR) pathway and cell death cascades. Both the soluble and insoluble components of DEPs generated intracellular ROS. Three-dimensional Raman imaging revealed that DEPs are taken up by LECs, which suggests internalized DEP cores produce ROS, as well as soluble DEP components. However, significant cell death pathways such as apoptosis, necroptosis, ferroptosis, pyroptosis, and parthanatos seem unlikely to be involved in DEP-induced cell death in LECs. This study clarifies how DEPs invading the body might affect the lymphatic system through the induction of cell death in LECs.


Asunto(s)
Células Endoteliales , Especies Reactivas de Oxígeno , Emisiones de Vehículos , Emisiones de Vehículos/toxicidad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Material Particulado/toxicidad , Apoptosis/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Muerte Celular/efectos de los fármacos
9.
BMC Plant Biol ; 24(1): 377, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714916

RESUMEN

BACKGROUND: European beech (Fagus sylvatica L.) trees produce seeds irregularly; therefore, it is necessary to store beech seeds for forestation. Despite the acquisition of desiccation tolerance during development, beech seeds are classified as intermediate because they lose viability during long-term storage faster than typical orthodox seeds. In this study, beech seeds stored for short (3 years) or long (20 years) periods under optimal conditions and displaying 92 and 30% germination capacity, respectively, were compared. RESULTS: Aged seeds displayed increased membrane damage, manifested as electrolyte leakage and lipid peroxidation levels. Analyses have been based on embryonic axes, which contained higher levels of reactive oxygen species (ROS) and higher levels of protein-bound methionine sulfoxide (MetO) in aged seeds. Using label-free quantitative proteomics, 3,949 proteins were identified, of which 2,442 were reliably quantified pointing to 24 more abundant proteins and 35 less abundant proteins in beech seeds under long-term storage conditions. Functional analyses based on gene ontology annotations revealed that nucleic acid binding activity (molecular function), ribosome organization or biogenesis and transmembrane transport (cellular processes), translational proteins (protein class) and membranous anatomical entities (cellular compartment) were affected in aged seeds. To verify whether MetO, the oxidative posttranslational modification of proteins that can be reversed via the action of methionine sulfoxide reductase (Msr) enzymes, is involved in the aging of beech seeds, we identified and quantified 226 MetO-containing proteins, among which 9 and 19 exhibited significantly up- and downregulated MetO levels, respectively, in beech seeds under long-term storage conditions. Several Msr isoforms were identified and recognized as MsrA1-like, MsrA4, MsrB5 and MsrB5-like in beech seeds. Only MsrA1-like displayed decreased abundance in aged seeds. CONCLUSIONS: We demonstrated that the loss of membrane integrity reflected in the elevated abundance of membrane proteins had a higher impact on seed aging progress than the MetO/Msr system. Proteome analyses enabled us to propose protein Sec61 and glyceraldehyde-3-phosphate dehydrogenase as potential longevity modulators in beech seeds.


Asunto(s)
Fagus , Metionina , Proteínas de Plantas , Proteómica , Semillas , Fagus/metabolismo , Metionina/metabolismo , Metionina/análogos & derivados , Semillas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinación , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
J Cardiothorac Surg ; 19(1): 283, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730417

RESUMEN

OBJECTIVE: Myocardial infarction (MI) -induced cardiac dysfunction can be attenuated by aerobic exercises. This study explored the mechanism of interval training (IT) regulating cardiac function in MI rats, providing some theoretical basis for clarifying MI pathogenesis and new ideas for clinically treating MI. METHODS: Rats were subjected to MI modeling, IT intervention, and treatments of the Transforming growth factor-ß1 (TGF-ß1) pathway or the nod-like receptor protein 3 (NLRP3) activators. Cardiac function and hemodynamic indicator alterations were observed. Myocardial pathological damage and fibrosis, reactive oxygen species (ROS) level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, MDA content, inflammasome-associated protein levels, and inflammatory factor levels were assessed. The binding between TGF-ß1 and receptor was detected. RESULTS: MI rats exhibited decreased left ventricle ejection fraction (LVEF), left ventricle fractional shortening  (LVFS), left ventricular systolic pressure  (LVSP), positive and negative derivates max/min (dP/dt max/min) and increased left ventricular end-systolic pressure (LVEDP), a large number of scar areas in myocardium, disordered cell arrangement and extensive fibrotic lesions, increased TGF-ß1 and receptor binding, elevated ROS level and MDA content and weakened SOD, CAT and GSH-Px activities, and up-regulated NLRP3, apoptosis-associated speck-like protein containing a CARD  (ASC) and cleaved-caspase-1 levels, while IT intervention caused ameliorated cardiac function. IT inactivated the TGF-ß1 pathway to decrease oxidative stress in myocardial tissues of MI rats and inhibit NLRP3 inflammasome activation. Activating NLRP3 partially reversed IT-mediated improvement on cardiac function in MI rats. CONCLUSION: IT diminished oxidative stress in myocardial tissues and suppressed NLRP3 inflammasome activation via inactivating the TGF-ß1 pathway, thus improving the cardiac function of MI rats.


Asunto(s)
Inflamasomas , Infarto del Miocardio , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1 , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Factor de Crecimiento Transformador beta1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Inflamasomas/metabolismo , Masculino , Modelos Animales de Enfermedad , Transducción de Señal/fisiología , Condicionamiento Físico Animal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Función Ventricular Izquierda/fisiología , Miocardio/metabolismo , Miocardio/patología
11.
Nutrients ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732526

RESUMEN

Distillers' grains are rich in protein and constitute a high-quality source of various bioactive peptides. The purpose of this study is to identify novel bioactive peptides with α-glucosidase inhibitory, antioxidant, and insulin resistance-ameliorating effects from distiller's grains protein hydrolysate. Three novel peptides (YPLPR, AFEPLR, and NDPF) showed good potential bioactivities, and the YPLPR peptide had the strongest bioactivities, whose IC50 values towards α-glucosidase inhibition, radical scavenging rates of 2,2'-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were about 5.31 mmol/L, 6.05 mmol/L, and 7.94 mmol/L, respectively. The glucose consumption of HepG2 cells treated with YPLPR increased significantly under insulin resistance condition. Moreover, the YPLPR peptide also had a good scavenging effect on intracellular reactive oxygen species (ROS) induced by H2O2 (the relative contents: 102.35% vs. 100%). Molecular docking results showed that these peptides could stably combine with α-glucosidase, ABTS, and DPPH free radicals, as well as related targets of the insulin signaling pathway through hydrogen bonding and van der Waals forces. This research presents a potentially valuable natural resource for reducing oxidative stress damage and regulating blood glucose in diabetes, thereby increasing the usage of distillers' grains peptides and boosting their economic worth.


Asunto(s)
Antioxidantes , Inhibidores de Glicósido Hidrolasas , Resistencia a la Insulina , Simulación del Acoplamiento Molecular , Péptidos , Inhibidores de Glicósido Hidrolasas/farmacología , Células Hep G2 , Humanos , Antioxidantes/farmacología , Péptidos/farmacología , Péptidos/química , Grano Comestible , alfa-Glucosidasas/metabolismo , Hidrolisados de Proteína/farmacología , Especies Reactivas de Oxígeno/metabolismo , Hipoglucemiantes/farmacología , Simulación por Computador , Insulina , Ácidos Sulfónicos , Compuestos de Bifenilo , Picratos , Benzotiazoles
12.
Int J Biol Sci ; 20(7): 2422-2439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725842

RESUMEN

Background & Aims: Reactive oxygen species (ROS) act as modulators triggering cellular dysfunctions and organ damage including liver fibrosis in which hepatic stellate cell (HSC) activation plays a key role. Previous studies suggest that microRNA-144 (miR-144) acts as a pro-oxidant molecule; however, whether and how miR-144 affects HSC activation and liver fibrosis remain unknown. Methods: Carbon tetrachloride (CCl4) and bile duct ligation (BDL)-induced experimental liver fibrosis models were used. Hepatic miR-144 expression was analyzed by miRNA in situ hybridization with RNAscope probe. The in vivo effects of silencing or overexpressing miR-144 were examined with an adeno-associated virus 6 (AAV6) carrying miR-144 inhibitor or mimics in fibrotic mouse experimental models. Results: In this study, we demonstrated that ROS treatment significantly upregulated miR-144 in HSCs, which further promoted HSC activation in vitro. Interestingly, miR-144 was preferentially elevated in HSCs of experimental liver fibrosis in mice and in human liver fibrotic tissues. Furthermore, in vivo loss or gain-of-function experiments via AAV6 carrying miR-144 antagomir or agomir revealed that blockade of miR-144 in HSCs mitigated, while overexpression of miR-144 in HSCs accelerated the development of experimental liver fibrosis. Mechanistically, SIN3 transcription regulator family member A (SIN3A), a transcriptional repressor, was identified to be the target of miR-144 in HSCs. MiR-144 downregulated Sin3A, and in line with this result, specific knockdown of Sin3a in HSCs remarkedly activated p38 MAPK signaling pathway to promote HSC activation, eventually exacerbating liver fibrosis. Conclusions: Oxidative stress-driven miR-144 fuels HSC activation and liver fibrogenesis by limiting the SIN3A-p38 axis. Thus, a specific inhibition of miR-144 in HSCs could be a novel therapeutic strategy for the treatment of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , MicroARNs , Estrés Oxidativo , Especies Reactivas de Oxígeno , Complejo Correpresor Histona Desacetilasa y Sin3 , Proteínas Quinasas p38 Activadas por Mitógenos , MicroARNs/metabolismo , MicroARNs/genética , Animales , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Ratones , Humanos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Tetracloruro de Carbono
13.
Int J Biol Sci ; 20(7): 2658-2685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725851

RESUMEN

Mucosal epithelial death is an essential pathological characteristic of portal hypertensive gastropathy (PHG). FADDosome can regulate mucosal homeostasis by controlling mitochondrial status and cell death. However, it remains ill-defined whether and how the FADDosome is involved in the epithelial death of PHG. The FADDosome formation, mitochondrial dysfunction, glycolysis process and NLRP3 inflammasome activation in PHG from both human sections and mouse models were investigated. NLRP3 wild-type (NLRP3-WT) and NLRP3 knockout (NLRP3-KO) littermate models, critical element inhibitors and cell experiments were utilized. The mechanism underlying FADDosome-regulated mitochondrial dysfunction and epithelial death in PHG was explored. Here, we found that FADD recruited caspase-8 and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) to form the FADDosome to promote Drp1-dependent mitochondrial fission and dysfunction in PHG. Also, FADDosome modulated NOX2 signaling to strengthen Drp1-dependent mitochondrial fission and alter glycolysis as well as enhance mitochondrial reactive oxygen species (mtROS) production. Moreover, due to the dysfunction of electron transport chain (ETC) and alteration of antioxidant enzymes activity, this altered glycolysis also contributed to mtROS production. Subsequently, the enhanced mtROS production induced NLRP3 inflammasome activation to result in the epithelial pyroptosis and mucosal injury in PHG. Thus, the FADDosome-regulated pathways may provide a potential therapeutic target for PHG.


Asunto(s)
Proteína de Dominio de Muerte Asociada a Fas , Mucosa Gástrica , Hipertensión Portal , Mitocondrias , Animales , Ratones , Mitocondrias/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Humanos , Hipertensión Portal/metabolismo , Hipertensión Portal/patología , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Inflamasomas/metabolismo
14.
Int J Biol Sci ; 20(7): 2592-2606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725855

RESUMEN

Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.


Asunto(s)
Autofagia , Lisosomas , Factor 2 Relacionado con NF-E2 , Factor 2 Relacionado con NF-E2/metabolismo , Autofagia/fisiología , Lisosomas/metabolismo , Animales , Ratones , Humanos , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras Transductoras de Señales
15.
Int J Biol Sci ; 20(7): 2576-2591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725862

RESUMEN

We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello , Mitocondrias , Piroptosis , Especies Reactivas de Oxígeno , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Animales , Línea Celular Tumoral , Mitocondrias/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Ratones Desnudos , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Membranas Mitocondriales/metabolismo , Proliferación Celular
16.
Int J Biol Sci ; 20(7): 2555-2575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725861

RESUMEN

Staphylococcus aureus (S. aureus) persistence in macrophages, potentially a reservoir for recurrence of chronic osteomyelitis, contributes to resistance and failure in treatment. As the mechanisms underlying survival of S. aureus in macrophages remain largely unknown, there has been no treatment approved. Here, in a mouse model of S. aureus osteomyelitis, we identified significantly up-regulated expression of SLC7A11 in both transcriptomes and translatomes of CD11b+F4/80+ macrophages, and validated a predominant distribution of SLC7A11 in F4/80+ cells around the S. aureus abscess. Importantly, pharmacological inhibition or genetic knockout of SLC7A11 promoted the bactericidal function of macrophages, reduced bacterial burden in the bone and improved bone structure in mice with S. aureus osteomyelitis. Mechanistically, aberrantly expressed SLC7A11 down-regulated the level of intracellular ROS and reduced lipid peroxidation, contributing to the impaired bactericidal function of macrophages. Interestingly, blocking SLC7A11 further activated expression of PD-L1 via the ROS-NF-κB axis, and a combination therapy of targeting both SLC7A11 and PD-L1 significantly enhanced the efficacy of clearing S. aureus in vitro and in vivo. Our findings suggest that targeting both SLC7A11 and PD-L1 is a promising therapeutic approach to reprogram the bactericidal function of macrophages and promote bacterial clearance in S. aureus osteomyelitis.


Asunto(s)
Macrófagos , Osteomielitis , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Osteomielitis/microbiología , Osteomielitis/metabolismo , Osteomielitis/genética , Ratones , Macrófagos/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
17.
Food Res Int ; 186: 114331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729716

RESUMEN

Peach fruit is prone to chilling injury (CI) during low-temperature storage, resulting in quality deterioration and economic losses. Our previous studies have found that exogenous trehalose treatment can alleviate the CI symptoms of peach by increasing sucrose accumulation. The purpose of this study was to explore the potential molecular mechanism of trehalose treatment in alleviating CI in postharvest peach fruit. Transcriptome analysis showed that trehalose induced gene expression in pathways of plant MAPK signaling, calcium signaling, and reactive oxygen species (ROS) signaling. Furthermore, molecular docking analysis indicated that PpCDPK24 may activate the ROS signaling pathway by phosphorylating PpRBOHE. Besides, PpWRKY40 mediates the activation of PpMAPKKK2-induced ROS signaling pathway by interacting with the PpRBOHE promoter. Accordingly, trehalose treatment significantly enhanced the activities of antioxidant-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and gluathione reductase (GR), as well as the transcription levels AsA-GSH cycle related gene, which led to the reduction of H2O2 and malondialdehyde (MDA) content in peach during cold storage. In summary, our results suggest that the potential molecular mechanism of trehalose treatment is to enhance antioxidant capacity by activating CDPK-mediated Ca2 + -ROS signaling pathway and WRKY-mediated MAPK-WRKY-ROS signaling pathway, thereby reducing the CI in peach fruit.


Asunto(s)
Antioxidantes , Frío , Frutas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prunus persica , Especies Reactivas de Oxígeno , Transducción de Señal , Trehalosa , Trehalosa/farmacología , Trehalosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simulación del Acoplamiento Molecular , Malondialdehído/metabolismo
18.
Sci Rep ; 14(1): 10696, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730068

RESUMEN

COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.


Asunto(s)
Antiinflamatorios , Antioxidantes , Antivirales , Tratamiento Farmacológico de COVID-19 , Curcumina , SARS-CoV-2 , Humanos , Curcumina/farmacología , Curcumina/análogos & derivados , Antioxidantes/farmacología , Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Antiinflamatorios/farmacología , Línea Celular Tumoral , Curcuma/química , Serina Endopeptidasas/metabolismo , COVID-19/virología , COVID-19/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología , Citocinas/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/virología
19.
Sci Rep ; 14(1): 10745, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730240

RESUMEN

Gastric cancer is one of the most common malignant tumors, and chemotherapy is the main treatment for advanced gastric cancer. However, chemotherapy resistance leads to treatment failure and poor prognosis in patients with gastric cancer. Multidrug resistance (MDR) is a major challenge that needs to be overcome in chemotherapy. According to recent research, ferroptosis activation is crucial for tumor therapeutic strategies. In this work, we explored the solution to chemoresistance in gastric cancer by investigating the effects of the Chinese medicine monomer baicalin on ferroptosis. Baicalin with different concentrations was used to treat the parent HGC27 and drug-resistant HGC27/L cells of gastric cancer. Cell viability was measured by CCK8, and synergistic effects of baicalin combined with oxaliplatin were evaluated using Synergy Finder software. The effects of baicalin on organelles and cell morphology were investigated using projective electron microscopy. Iron concentration, MDA production and GSH inhibition rate were measured by colorimetry. ROS accumulation was detected by flow cytometry. The ferroptosis-related genes (IREB2, TfR, GPX4, FTH1), P53, and SLC7A11 were analysed by Western blot, and the expression differences of the above proteins between pretreatment and pretreatment of different concentrations of baicalin, were assayed in both parental HGC27 cells and Oxaliplatin-resistant HGC27/L cells. Mechanically, Baicalin disrupted iron homeostasis and inhibits antioxidant defense, resulting in iron accumulation, lipid peroxide aggregation, and specifically targeted and activated ferroptosis by upregulating the expression of tumor suppressor gene p53, thereby activating the SLC7A11/GPX4/ROS pathway mediated by it. Baicalin activates ferroptosis through multiple pathways and targets, thereby inhibiting the viability of oxaliplatin-resistant gastric cancer HGC27/L cells and enhancing the sensitivity to oxaliplatin chemotherapy.


Asunto(s)
Resistencia a Antineoplásicos , Ferroptosis , Flavonoides , Oxaliplatino , Neoplasias Gástricas , Proteína p53 Supresora de Tumor , Ferroptosis/efectos de los fármacos , Humanos , Flavonoides/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Oxaliplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Sinergismo Farmacológico , Especies Reactivas de Oxígeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
20.
Reprod Domest Anim ; 59(5): e14580, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698701

RESUMEN

The pathogenesis of benign prostatic hyperplasia (BPH) in dogs is still not fully understood. Some studies suggest that oxidative stress may have a potential role in the pathogenesis of BPH in dogs. Age-related hormonal changes may activate a chronic inflammatory response in the prostate. This causes the generation of reactive oxygen species (ROS) and results in oxidative stress. Excessive production of ROS results in DNA damage and hyperplastic transformation of prostatic cells. The use of antioxidants for improvement of treatment outcomes for canine PBH has been discussed. Further research is needed on the importance of oxidative stress in the development of BPH in dogs and the usefulness of antioxidants in the supportive treatment of this condition.


Asunto(s)
Antioxidantes , Enfermedades de los Perros , Estrés Oxidativo , Hiperplasia Prostática , Especies Reactivas de Oxígeno , Animales , Perros , Masculino , Hiperplasia Prostática/veterinaria , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Especies Reactivas de Oxígeno/metabolismo , Daño del ADN , Próstata/patología , Próstata/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA